Afgeleide van $$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ naar $$$r$$$

De rekenmachine berekent de afgeleide van $$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ naar $$$r$$$, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)$$$.

Oplossing

Pas de regel van de constante factor $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$ toe met $$$c = 3 \sin{\left(3 \theta \right)}$$$ en $$$f{\left(r \right)} = e^{- 4 r}$$$:

$${\color{red}\left(\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\right)} = {\color{red}\left(3 \sin{\left(3 \theta \right)} \frac{d}{dr} \left(e^{- 4 r}\right)\right)}$$

De functie $$$e^{- 4 r}$$$ is de samenstelling $$$f{\left(g{\left(r \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = e^{u}$$$ en $$$g{\left(r \right)} = - 4 r$$$.

Pas de kettingregel $$$\frac{d}{dr} \left(f{\left(g{\left(r \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dr} \left(g{\left(r \right)}\right)$$$ toe:

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(e^{- 4 r}\right)\right)} = 3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dr} \left(- 4 r\right)\right)}$$

De afgeleide van de exponentiële functie is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dr} \left(- 4 r\right) = 3 \sin{\left(3 \theta \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dr} \left(- 4 r\right)$$

Keer terug naar de oorspronkelijke variabele:

$$3 e^{{\color{red}\left(u\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right) = 3 e^{{\color{red}\left(- 4 r\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right)$$

Pas de regel van de constante factor $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$ toe met $$$c = -4$$$ en $$$f{\left(r \right)} = r$$$:

$$3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(- 4 r\right)\right)} = 3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(- 4 \frac{d}{dr} \left(r\right)\right)}$$

Pas de machtsregel $$$\frac{d}{dr} \left(r^{n}\right) = n r^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dr} \left(r\right) = 1$$$:

$$- 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(r\right)\right)} = - 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(1\right)}$$

Dus, $$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$.

Antwoord

$$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$A


Please try a new game Rotatly