Afgeleide van $$$2 - \frac{1}{t^{2}}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)$$$.
Oplossing
De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:
$${\color{red}\left(\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2\right) - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)}$$De afgeleide van een constante is $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(2\right)\right)} - \frac{d}{dt} \left(\frac{1}{t^{2}}\right) = {\color{red}\left(0\right)} - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)$$Pas de machtsregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ toe met $$$n = -2$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)} = - {\color{red}\left(- \frac{2}{t^{3}}\right)}$$Dus, $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$.
Antwoord
$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$A
Please try a new game Rotatly