Afgeleide van $$$2 \operatorname{atan}{\left(u \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right)$$$.
Oplossing
Pas de regel van de constante factor $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ toe met $$$c = 2$$$ en $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)}$$De afgeleide van de inverse tangens is $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:
$$2 {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} = 2 {\color{red}\left(\frac{1}{u^{2} + 1}\right)}$$Dus, $$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right) = \frac{2}{u^{2} + 1}$$$.
Antwoord
$$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right) = \frac{2}{u^{2} + 1}$$$A