Afgeleide van $$$1 - \cos{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right)$$$.
Oplossing
De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:
$${\color{red}\left(\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$De afgeleide van de cosinus is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(1\right) = - {\color{red}\left(- \sin{\left(x \right)}\right)} + \frac{d}{dx} \left(1\right)$$De afgeleide van een constante is $$$0$$$:
$$\sin{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} = \sin{\left(x \right)} + {\color{red}\left(0\right)}$$Dus, $$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Antwoord
$$$\frac{d}{dx} \left(1 - \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$A
Please try a new game Rotatly