Afgeleide van $$$1 - y^{2}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dy} \left(1 - y^{2}\right)$$$.
Oplossing
De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:
$${\color{red}\left(\frac{d}{dy} \left(1 - y^{2}\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(1\right) - \frac{d}{dy} \left(y^{2}\right)\right)}$$Pas de machtsregel $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ toe met $$$n = 2$$$:
$$- {\color{red}\left(\frac{d}{dy} \left(y^{2}\right)\right)} + \frac{d}{dy} \left(1\right) = - {\color{red}\left(2 y\right)} + \frac{d}{dy} \left(1\right)$$De afgeleide van een constante is $$$0$$$:
$$- 2 y + {\color{red}\left(\frac{d}{dy} \left(1\right)\right)} = - 2 y + {\color{red}\left(0\right)}$$Dus, $$$\frac{d}{dy} \left(1 - y^{2}\right) = - 2 y$$$.
Antwoord
$$$\frac{d}{dy} \left(1 - y^{2}\right) = - 2 y$$$A
Please try a new game Rotatly