Afgeleide van $$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$

De rekenmachine vindt de afgeleide van $$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right)$$$.

Oplossing

De functie $$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$ en $$$g{\left(x \right)} = x^{2} - 3 x + 9$$$.

Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right) \frac{d}{dx} \left(x^{2} - 3 x + 9\right)\right)}$$

Pas de machtsregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ toe met $$$n = - \frac{1}{2}$$$:

$${\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right)\right)} \frac{d}{dx} \left(x^{2} - 3 x + 9\right) = {\color{red}\left(- \frac{1}{2 u^{\frac{3}{2}}}\right)} \frac{d}{dx} \left(x^{2} - 3 x + 9\right)$$

Keer terug naar de oorspronkelijke variabele:

$$- \frac{\frac{d}{dx} \left(x^{2} - 3 x + 9\right)}{2 {\color{red}\left(u\right)}^{\frac{3}{2}}} = - \frac{\frac{d}{dx} \left(x^{2} - 3 x + 9\right)}{2 {\color{red}\left(x^{2} - 3 x + 9\right)}^{\frac{3}{2}}}$$

De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2} - 3 x + 9\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(9\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

De afgeleide van een constante is $$$0$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(9\right)\right)} - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(x^{2}\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(x^{2}\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 2$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(3 x\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(2 x\right)} - \frac{d}{dx} \left(3 x\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 3$$$ en $$$f{\left(x \right)} = x$$$:

$$- \frac{2 x - {\color{red}\left(\frac{d}{dx} \left(3 x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{2 x - {\color{red}\left(3 \frac{d}{dx} \left(x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- \frac{2 x - 3 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{2 x - 3 {\color{red}\left(1\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

Vereenvoudig:

$$- \frac{2 x - 3}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

Dus, $$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right) = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$$.

Antwoord

$$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right) = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$$A


Please try a new game Rotatly