Afgeleide van $$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$

De rekenmachine vindt de afgeleide van $$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)$$$.

Oplossing

Pas de regel van de constante factor $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ toe met $$$c = - \frac{\sqrt{5}}{5}$$$ en $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:

$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)\right)} = {\color{red}\left(- \frac{\sqrt{5}}{5} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$

De afgeleide van de sinus is $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:

$$- \frac{\sqrt{5} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{5} = - \frac{\sqrt{5} {\color{red}\left(\cos{\left(t \right)}\right)}}{5}$$

Dus, $$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$.

Antwoord

$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$A


Please try a new game Rotatly