Bepaal de kegelsnede voor $$$x^{2} - 3 y^{2} = 16 x$$$
Gerelateerde rekenmachines: Paraboolrekenmachine, Cirkelrekenmachine, Ellips-rekenmachine, Hyperboolrekenmachine
Uw invoer
Identificeer en bepaal de eigenschappen van de kegelsnede $$$x^{2} - 3 y^{2} = 16 x$$$.
Oplossing
De algemene vergelijking van een kegelsnede is $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
In ons geval geldt $$$A = 1$$$, $$$B = 0$$$, $$$C = -3$$$, $$$D = -16$$$, $$$E = 0$$$, $$$F = 0$$$.
De discriminant van de kegelsnede is $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 768$$$.
Vervolgens, $$$B^{2} - 4 A C = 12$$$.
Aangezien $$$B^{2} - 4 A C \gt 0$$$, stelt de vergelijking een hyperbool voor.
Om de eigenschappen te bepalen, gebruik de hyperbola calculator.
Antwoord
$$$x^{2} - 3 y^{2} = 16 x$$$A stelt een hyperbool voor.
Algemene vorm: $$$x^{2} - 16 x - 3 y^{2} = 0$$$A.
Grafiek: zie de graphing calculator.