$$$\frac{x}{\cos^{2}{\left(x \right)}}$$$의 적분
사용자 입력
$$$\int \frac{x}{\cos^{2}{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{\frac{x}{\cos^{2}{\left(x \right)}} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=\frac{dx}{\cos^{2}{\left(x \right)}}$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}=\tan{\left(x \right)}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\frac{x}{\cos^{2}{\left(x \right)}} d x}}}={\color{red}{\left(x \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 1 d x}\right)}}={\color{red}{\left(x \tan{\left(x \right)} - \int{\tan{\left(x \right)} d x}\right)}}$$
탄젠트를 $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$ 형태로 다시 쓰십시오:
$$x \tan{\left(x \right)} - {\color{red}{\int{\tan{\left(x \right)} d x}}} = x \tan{\left(x \right)} - {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
$$$u=\cos{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(x \right)} dx = - du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$x \tan{\left(x \right)} - {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = x \tan{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$x \tan{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = x \tan{\left(x \right)} - {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x \tan{\left(x \right)} + {\color{red}{\int{\frac{1}{u} d u}}} = x \tan{\left(x \right)} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=\cos{\left(x \right)}$$$을 기억하라:
$$x \tan{\left(x \right)} + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x \tan{\left(x \right)} + \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$
따라서,
$$\int{\frac{x}{\cos^{2}{\left(x \right)}} d x} = x \tan{\left(x \right)} + \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{x}{\cos^{2}{\left(x \right)}} d x} = x \tan{\left(x \right)} + \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$
정답
$$$\int \frac{x}{\cos^{2}{\left(x \right)}}\, dx = \left(x \tan{\left(x \right)} + \ln\left(\left|{\cos{\left(x \right)}}\right|\right)\right) + C$$$A