$$$\tan{\left(2 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\tan{\left(2 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \tan{\left(2 x \right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=2 x$$$라 하자.

그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\tan{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)}}{2} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \tan{\left(u \right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{\tan{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} d u}}{2}\right)}}$$

탄젠트를 $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$ 형태로 다시 쓰십시오:

$$\frac{{\color{red}{\int{\tan{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{2}$$

$$$v=\cos{\left(u \right)}$$$라 하자.

그러면 $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(u \right)} du = - dv$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{2}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=-1$$$$$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:

$$\frac{{\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}}{2}$$

$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

다음 $$$v=\cos{\left(u \right)}$$$을 기억하라:

$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}}{2}$$

다음 $$$u=2 x$$$을 기억하라:

$$- \frac{\ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}\right| \right)}}{2}$$

따라서,

$$\int{\tan{\left(2 x \right)} d x} = - \frac{\ln{\left(\left|{\cos{\left(2 x \right)}}\right| \right)}}{2}$$

적분 상수를 추가하세요:

$$\int{\tan{\left(2 x \right)} d x} = - \frac{\ln{\left(\left|{\cos{\left(2 x \right)}}\right| \right)}}{2}+C$$

정답

$$$\int \tan{\left(2 x \right)}\, dx = - \frac{\ln\left(\left|{\cos{\left(2 x \right)}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly