$$$\sqrt{2} \sqrt{x} - x^{2}$$$의 적분
사용자 입력
$$$\int \left(\sqrt{2} \sqrt{x} - x^{2}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{\sqrt{2} \sqrt{x} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\int{x^{2} d x}}}=\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\sqrt{2}$$$와 $$$f{\left(x \right)} = \sqrt{x}$$$에 적용하세요:
$$- \frac{x^{3}}{3} + {\color{red}{\int{\sqrt{2} \sqrt{x} d x}}} = - \frac{x^{3}}{3} + {\color{red}{\sqrt{2} \int{\sqrt{x} d x}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{1}{2}$$$에 적용합니다:
$$- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\int{\sqrt{x} d x}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\int{x^{\frac{1}{2}} d x}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$
따라서,
$$\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x} = \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}$$
적분 상수를 추가하세요:
$$\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x} = \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}+C$$
정답
$$$\int \left(\sqrt{2} \sqrt{x} - x^{2}\right)\, dx = \left(\frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}\right) + C$$$A