Integral of $$$\sqrt{2} \sqrt{x} - x^{2}$$$

The calculator will find the integral/antiderivative of $$$\sqrt{2} \sqrt{x} - x^{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\sqrt{2} \sqrt{x} - x^{2}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{\sqrt{2} \sqrt{x} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\int{x^{2} d x}}}=\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{\sqrt{2} \sqrt{x} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\sqrt{2}$$$ and $$$f{\left(x \right)} = \sqrt{x}$$$:

$$- \frac{x^{3}}{3} + {\color{red}{\int{\sqrt{2} \sqrt{x} d x}}} = - \frac{x^{3}}{3} + {\color{red}{\sqrt{2} \int{\sqrt{x} d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{2}$$$:

$$- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\int{\sqrt{x} d x}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\int{x^{\frac{1}{2}} d x}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \frac{x^{3}}{3} + \sqrt{2} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$

Therefore,

$$\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x} = \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}$$

Add the constant of integration:

$$\int{\left(\sqrt{2} \sqrt{x} - x^{2}\right)d x} = \frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}+C$$

Answer

$$$\int \left(\sqrt{2} \sqrt{x} - x^{2}\right)\, dx = \left(\frac{2 \sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}\right) + C$$$A


Please try a new game Rotatly