$$$\frac{1}{x^{2} + 4}$$$의 적분
사용자 입력
$$$\int \frac{1}{x^{2} + 4}\, dx$$$을(를) 구하시오.
풀이
$$$u=\frac{x}{2}$$$라 하자.
그러면 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = 2 du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{1}{x^{2} + 4} d x}}} = {\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$에 적용하세요:
$${\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$
$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
다음 $$$u=\frac{x}{2}$$$을 기억하라:
$$\frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{atan}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2}$$
따라서,
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}+C$$
정답
$$$\int \frac{1}{x^{2} + 4}\, dx = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2} + C$$$A