$$$\frac{1}{x^{2} + 4}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{1}{x^{2} + 4}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{x^{2} + 4}\, dx$$$을(를) 구하시오.

풀이

$$$u=\frac{x}{2}$$$라 하자.

그러면 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = 2 du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{1}{x^{2} + 4} d x}}} = {\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$에 적용하세요:

$${\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$

$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

다음 $$$u=\frac{x}{2}$$$을 기억하라:

$$\frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{atan}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2}$$

따라서,

$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}+C$$

정답

$$$\int \frac{1}{x^{2} + 4}\, dx = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly