Funktion $$$\frac{1}{x^{2} + 4}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x^{2} + 4}\, dx$$$.
Ratkaisu
Olkoon $$$u=\frac{x}{2}$$$.
Tällöin $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = 2 du$$$.
Siis,
$${\color{red}{\int{\frac{1}{x^{2} + 4} d x}}} = {\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
Muista, että $$$u=\frac{x}{2}$$$:
$$\frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{atan}{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2}$$
Näin ollen,
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}$$
Lisää integrointivakio:
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}+C$$
Vastaus
$$$\int \frac{1}{x^{2} + 4}\, dx = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2} + C$$$A