$$$- x^{2} + x$$$의 적분
사용자 입력
$$$\int \left(- x^{2} + x\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- x^{2} + x\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{x^{2} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- \int{x^{2} d x} + {\color{red}{\int{x d x}}}=- \int{x^{2} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{x^{2} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{x^{2}}{2} - {\color{red}{\int{x^{2} d x}}}=\frac{x^{2}}{2} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{2}}{2} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
따라서,
$$\int{\left(- x^{2} + x\right)d x} = - \frac{x^{3}}{3} + \frac{x^{2}}{2}$$
간단히 하시오:
$$\int{\left(- x^{2} + x\right)d x} = \frac{x^{2} \left(3 - 2 x\right)}{6}$$
적분 상수를 추가하세요:
$$\int{\left(- x^{2} + x\right)d x} = \frac{x^{2} \left(3 - 2 x\right)}{6}+C$$
정답
$$$\int \left(- x^{2} + x\right)\, dx = \frac{x^{2} \left(3 - 2 x\right)}{6} + C$$$A