$$$- \frac{x^{5}}{3} + x^{3}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- \frac{x^{5}}{3} + x^{3}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- \frac{x^{5}}{3} + x^{3}\right)\, dx$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x}}} = {\color{red}{\left(\int{x^{3} d x} - \int{\frac{x^{5}}{3} d x}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=3$$$에 적용합니다:

$$- \int{\frac{x^{5}}{3} d x} + {\color{red}{\int{x^{3} d x}}}=- \int{\frac{x^{5}}{3} d x} + {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \int{\frac{x^{5}}{3} d x} + {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{3}$$$$$$f{\left(x \right)} = x^{5}$$$에 적용하세요:

$$\frac{x^{4}}{4} - {\color{red}{\int{\frac{x^{5}}{3} d x}}} = \frac{x^{4}}{4} - {\color{red}{\left(\frac{\int{x^{5} d x}}{3}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=5$$$에 적용합니다:

$$\frac{x^{4}}{4} - \frac{{\color{red}{\int{x^{5} d x}}}}{3}=\frac{x^{4}}{4} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{3}=\frac{x^{4}}{4} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{3}$$

따라서,

$$\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x} = - \frac{x^{6}}{18} + \frac{x^{4}}{4}$$

적분 상수를 추가하세요:

$$\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x} = - \frac{x^{6}}{18} + \frac{x^{4}}{4}+C$$

정답

$$$\int \left(- \frac{x^{5}}{3} + x^{3}\right)\, dx = \left(- \frac{x^{6}}{18} + \frac{x^{4}}{4}\right) + C$$$A


Please try a new game Rotatly