Integral de $$$- \frac{x^{5}}{3} + x^{3}$$$

La calculadora encontrará la integral/antiderivada de $$$- \frac{x^{5}}{3} + x^{3}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- \frac{x^{5}}{3} + x^{3}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x}}} = {\color{red}{\left(\int{x^{3} d x} - \int{\frac{x^{5}}{3} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=3$$$:

$$- \int{\frac{x^{5}}{3} d x} + {\color{red}{\int{x^{3} d x}}}=- \int{\frac{x^{5}}{3} d x} + {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \int{\frac{x^{5}}{3} d x} + {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = x^{5}$$$:

$$\frac{x^{4}}{4} - {\color{red}{\int{\frac{x^{5}}{3} d x}}} = \frac{x^{4}}{4} - {\color{red}{\left(\frac{\int{x^{5} d x}}{3}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:

$$\frac{x^{4}}{4} - \frac{{\color{red}{\int{x^{5} d x}}}}{3}=\frac{x^{4}}{4} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{3}=\frac{x^{4}}{4} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{3}$$

Por lo tanto,

$$\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x} = - \frac{x^{6}}{18} + \frac{x^{4}}{4}$$

Añade la constante de integración:

$$\int{\left(- \frac{x^{5}}{3} + x^{3}\right)d x} = - \frac{x^{6}}{18} + \frac{x^{4}}{4}+C$$

Respuesta

$$$\int \left(- \frac{x^{5}}{3} + x^{3}\right)\, dx = \left(- \frac{x^{6}}{18} + \frac{x^{4}}{4}\right) + C$$$A


Please try a new game Rotatly