$$$x^{3} e^{6 x}$$$의 적분
사용자 입력
$$$\int x^{3} e^{6 x}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{x^{3} e^{6 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{3}$$$와 $$$\operatorname{dv}=e^{6 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{3}\right)^{\prime }dx=3 x^{2} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{6 x} d x}=\frac{e^{6 x}}{6}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$${\color{red}{\int{x^{3} e^{6 x} d x}}}={\color{red}{\left(x^{3} \cdot \frac{e^{6 x}}{6}-\int{\frac{e^{6 x}}{6} \cdot 3 x^{2} d x}\right)}}={\color{red}{\left(\frac{x^{3} e^{6 x}}{6} - \int{\frac{x^{2} e^{6 x}}{2} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = x^{2} e^{6 x}$$$에 적용하세요:
$$\frac{x^{3} e^{6 x}}{6} - {\color{red}{\int{\frac{x^{2} e^{6 x}}{2} d x}}} = \frac{x^{3} e^{6 x}}{6} - {\color{red}{\left(\frac{\int{x^{2} e^{6 x} d x}}{2}\right)}}$$
적분 $$$\int{x^{2} e^{6 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{2}$$$와 $$$\operatorname{dv}=e^{6 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{6 x} d x}=\frac{e^{6 x}}{6}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$\frac{x^{3} e^{6 x}}{6} - \frac{{\color{red}{\int{x^{2} e^{6 x} d x}}}}{2}=\frac{x^{3} e^{6 x}}{6} - \frac{{\color{red}{\left(x^{2} \cdot \frac{e^{6 x}}{6}-\int{\frac{e^{6 x}}{6} \cdot 2 x d x}\right)}}}{2}=\frac{x^{3} e^{6 x}}{6} - \frac{{\color{red}{\left(\frac{x^{2} e^{6 x}}{6} - \int{\frac{x e^{6 x}}{3} d x}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(x \right)} = x e^{6 x}$$$에 적용하세요:
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{{\color{red}{\int{\frac{x e^{6 x}}{3} d x}}}}{2} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{{\color{red}{\left(\frac{\int{x e^{6 x} d x}}{3}\right)}}}{2}$$
적분 $$$\int{x e^{6 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=e^{6 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{6 x} d x}=\frac{e^{6 x}}{6}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{{\color{red}{\int{x e^{6 x} d x}}}}{6}=\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{{\color{red}{\left(x \cdot \frac{e^{6 x}}{6}-\int{\frac{e^{6 x}}{6} \cdot 1 d x}\right)}}}{6}=\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{{\color{red}{\left(\frac{x e^{6 x}}{6} - \int{\frac{e^{6 x}}{6} d x}\right)}}}{6}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{6}$$$와 $$$f{\left(x \right)} = e^{6 x}$$$에 적용하세요:
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\int{\frac{e^{6 x}}{6} d x}}}}{6} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\left(\frac{\int{e^{6 x} d x}}{6}\right)}}}{6}$$
$$$u=6 x$$$라 하자.
그러면 $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{6}$$$임을 얻습니다.
따라서,
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\int{e^{6 x} d x}}}}{36} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\int{\frac{e^{u}}{6} d u}}}}{36}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{6}$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\int{\frac{e^{u}}{6} d u}}}}{36} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{6}\right)}}}{36}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{\int{e^{u} d u}}}}{216} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{{\color{red}{e^{u}}}}{216}$$
다음 $$$u=6 x$$$을 기억하라:
$$\frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{e^{{\color{red}{u}}}}{216} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{e^{{\color{red}{\left(6 x\right)}}}}{216}$$
따라서,
$$\int{x^{3} e^{6 x} d x} = \frac{x^{3} e^{6 x}}{6} - \frac{x^{2} e^{6 x}}{12} + \frac{x e^{6 x}}{36} - \frac{e^{6 x}}{216}$$
간단히 하시오:
$$\int{x^{3} e^{6 x} d x} = \frac{\left(36 x^{3} - 18 x^{2} + 6 x - 1\right) e^{6 x}}{216}$$
적분 상수를 추가하세요:
$$\int{x^{3} e^{6 x} d x} = \frac{\left(36 x^{3} - 18 x^{2} + 6 x - 1\right) e^{6 x}}{216}+C$$
정답
$$$\int x^{3} e^{6 x}\, dx = \frac{\left(36 x^{3} - 18 x^{2} + 6 x - 1\right) e^{6 x}}{216} + C$$$A