$$$x^{2} - \frac{1}{x^{22}}$$$의 적분
사용자 입력
$$$\int \left(x^{2} - \frac{1}{x^{22}}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{22}} d x} + \int{x^{2} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \int{\frac{1}{x^{22}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{x^{22}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{x^{22}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-22$$$에 적용합니다:
$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{x^{22}} d x}}}=\frac{x^{3}}{3} - {\color{red}{\int{x^{-22} d x}}}=\frac{x^{3}}{3} - {\color{red}{\frac{x^{-22 + 1}}{-22 + 1}}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{x^{-21}}{21}\right)}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{1}{21 x^{21}}\right)}}$$
따라서,
$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{x^{3}}{3} + \frac{1}{21 x^{21}}$$
간단히 하시오:
$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{7 x^{24} + 1}{21 x^{21}}$$
적분 상수를 추가하세요:
$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{7 x^{24} + 1}{21 x^{21}}+C$$
정답
$$$\int \left(x^{2} - \frac{1}{x^{22}}\right)\, dx = \frac{7 x^{24} + 1}{21 x^{21}} + C$$$A