Ολοκλήρωμα του $$$x^{2} - \frac{1}{x^{22}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$x^{2} - \frac{1}{x^{22}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(x^{2} - \frac{1}{x^{22}}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{22}} d x} + \int{x^{2} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- \int{\frac{1}{x^{22}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{x^{22}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{x^{22}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-22$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{x^{22}} d x}}}=\frac{x^{3}}{3} - {\color{red}{\int{x^{-22} d x}}}=\frac{x^{3}}{3} - {\color{red}{\frac{x^{-22 + 1}}{-22 + 1}}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{x^{-21}}{21}\right)}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{1}{21 x^{21}}\right)}}$$

Επομένως,

$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{x^{3}}{3} + \frac{1}{21 x^{21}}$$

Απλοποιήστε:

$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{7 x^{24} + 1}{21 x^{21}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(x^{2} - \frac{1}{x^{22}}\right)d x} = \frac{7 x^{24} + 1}{21 x^{21}}+C$$

Απάντηση

$$$\int \left(x^{2} - \frac{1}{x^{22}}\right)\, dx = \frac{7 x^{24} + 1}{21 x^{21}} + C$$$A


Please try a new game Rotatly