$$$\tan^{6}{\left(x \right)}$$$의 적분
사용자 입력
$$$\int \tan^{6}{\left(x \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\tan{\left(x \right)}$$$라 하자.
그러면 $$$x=\operatorname{atan}{\left(u \right)}$$$ 및 $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (단계는 »에서 볼 수 있습니다).
따라서,
$${\color{red}{\int{\tan^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}}$$
분자의 차수가 분모의 차수보다 크거나 같으므로 다항식의 긴 나눗셈을 수행하십시오(단계는 »에서 볼 수 있습니다):
$${\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{4} d u}}}=u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
$$$\frac{1}{u^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{u^{5}}{5} - \frac{u^{3}}{3} + u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = \frac{u^{5}}{5} - \frac{u^{3}}{3} + u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
다음 $$$u=\tan{\left(x \right)}$$$을 기억하라:
$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}} - \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
따라서,
$$\int{\tan^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$
간단히 하시오:
$$\int{\tan^{6}{\left(x \right)} d x} = - x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}$$
적분 상수를 추가하세요:
$$\int{\tan^{6}{\left(x \right)} d x} = - x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}+C$$
정답
$$$\int \tan^{6}{\left(x \right)}\, dx = \left(- x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}\right) + C$$$A