$$$\tan^{6}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\tan^{6}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tan^{6}{\left(x \right)}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步驟見»)。

因此,

$${\color{red}{\int{\tan^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}}$$

由於分子次數不小於分母次數,進行多項式長除法(步驟見»):

$${\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$

$$u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{4} d u}}}=u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u - \int{u^{2} d u} - \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u - \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$

$$\frac{u^{5}}{5} - \frac{u^{3}}{3} + u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = \frac{u^{5}}{5} - \frac{u^{3}}{3} + u - {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

回顧一下 $$$u=\tan{\left(x \right)}$$$

$$- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} + {\color{red}{\tan{\left(x \right)}}} - \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$

因此,

$$\int{\tan^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)} - \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

化簡:

$$\int{\tan^{6}{\left(x \right)} d x} = - x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}$$

加上積分常數:

$$\int{\tan^{6}{\left(x \right)} d x} = - x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}+C$$

答案

$$$\int \tan^{6}{\left(x \right)}\, dx = \left(- x + \frac{\tan^{5}{\left(x \right)}}{5} - \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly