$$$\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx$$$을(를) 구하시오.
풀이
공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=x$$$와 $$$\beta=2 x$$$를 대입하여 $$$\sin\left(x \right)\sin\left(2 x \right)$$$을(를) 다시 쓰십시오.:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}}$$
식을 전개하시오:
$${\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}$$$에 적용하세요:
$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}{2}\right)}}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x} + \int{\frac{\cos^{2}{\left(x \right)}}{916} d x}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{916}$$$와 $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$에 적용하세요:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{916} d x}}}}{2} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos^{2}{\left(x \right)} d x}}{916}\right)}}}{2}$$
멱 감소 공식 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$를 $$$\alpha=x$$$에 적용하세요:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$에 적용하세요:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{1832}$$
각 항별로 적분하십시오:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{3664}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{\int{1 d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{x}}}{3664}$$
$$$u=2 x$$$라 하자.
그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{3664}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{7328}$$
다음 $$$u=2 x$$$을 기억하라:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{7328}$$
공식 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=x$$$와 $$$\beta=3 x$$$를 대입하여 $$$\cos\left(x \right)\cos\left(3 x \right)$$$을(를) 다시 쓰십시오.:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}$$$에 적용하세요:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}{2}\right)}}}{2}$$
각 항별로 적분하십시오:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\int{\frac{\cos{\left(2 x \right)}}{916} d x} + \int{\frac{\cos{\left(4 x \right)}}{916} d x}\right)}}}{4}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{916}$$$와 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$에 적용하세요:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(2 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(2 x \right)} d x}}{916}\right)}}}{4}$$
이미 계산된 적분 $$$\int{\cos{\left(2 x \right)} d x}$$$:
$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$
따라서,
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{3664}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{916}$$$와 $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$에 적용하세요:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(4 x \right)} d x}}{916}\right)}}}{4}$$
$$$v=4 x$$$라 하자.
그러면 $$$dv=\left(4 x\right)^{\prime }dx = 4 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{dv}{4}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{3664}$$
코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{14656} = \frac{x}{3664} - \frac{{\color{red}{\sin{\left(v \right)}}}}{14656}$$
다음 $$$v=4 x$$$을 기억하라:
$$\frac{x}{3664} - \frac{\sin{\left({\color{red}{v}} \right)}}{14656} = \frac{x}{3664} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{14656}$$
따라서,
$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}$$
적분 상수를 추가하세요:
$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}+C$$
정답
$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx = \left(\frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}\right) + C$$$A