$$$\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx$$$ を求めよ。
解答
$$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ の公式を用い、$$$\alpha=x$$$ および $$$\beta=2 x$$$ を用いて $$$\sin\left(x \right)\sin\left(2 x \right)$$$ を変形せよ:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}}$$
式を展開:
$${\color{red}{\int{\frac{\left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{2}\right) \cos{\left(x \right)}}{916} d x}}} = {\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}$$$ に対して適用する:
$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{1832} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{1832}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}{2}\right)}}$$
項別に積分せよ:
$$\frac{{\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{916} - \frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x} + \int{\frac{\cos^{2}{\left(x \right)}}{916} d x}\right)}}}{2}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{916}$$$ と $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$ に対して適用する:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{916} d x}}}}{2} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos^{2}{\left(x \right)} d x}}{916}\right)}}}{2}$$
冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ を $$$\alpha=x$$$ に適用する:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ に対して適用する:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{1832} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{1832}$$
項別に積分せよ:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{3664}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$- \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{\int{1 d x}}}}{3664} = - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\int{\cos{\left(2 x \right)} d x}}{3664} + \frac{{\color{red}{x}}}{3664}$$
$$$u=2 x$$$ とする。
すると $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{2}$$$ となります。
この積分は次のように書き換えられる
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{3664} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{3664}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{7328}$$
次のことを思い出してください $$$u=2 x$$$:
$$\frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{7328} = \frac{x}{3664} - \frac{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{7328}$$
$$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ の公式を用い、$$$\alpha=x$$$ および $$$\beta=3 x$$$ を用いて $$$\cos\left(x \right)\cos\left(3 x \right)$$$ を変形せよ:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\frac{\cos{\left(x \right)} \cos{\left(3 x \right)}}{916} d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}$$$ に対して適用する:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{1832} + \frac{\cos{\left(4 x \right)}}{1832}\right)d x}}}}{2} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\frac{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}{2}\right)}}}{2}$$
項別に積分せよ:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{916} + \frac{\cos{\left(4 x \right)}}{916}\right)d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{{\color{red}{\left(\int{\frac{\cos{\left(2 x \right)}}{916} d x} + \int{\frac{\cos{\left(4 x \right)}}{916} d x}\right)}}}{4}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{916}$$$ と $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ に対して適用する:
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(2 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(2 x \right)} d x}}{916}\right)}}}{4}$$
積分 $$$\int{\cos{\left(2 x \right)} d x}$$$ はすでに計算されています:
$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$
したがって、
$$\frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{3664} = \frac{x}{3664} + \frac{\sin{\left(2 x \right)}}{7328} - \frac{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{3664}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{916}$$$ と $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ に対して適用する:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(4 x \right)}}{916} d x}}}}{4} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(4 x \right)} d x}}{916}\right)}}}{4}$$
$$$v=4 x$$$ とする。
すると $$$dv=\left(4 x\right)^{\prime }dx = 4 dx$$$(手順は»で確認できます)、$$$dx = \frac{dv}{4}$$$ となります。
したがって、
$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664}$$
定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{4}$$$ と $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ に対して適用する:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{3664} = \frac{x}{3664} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{3664}$$
余弦の積分は$$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{x}{3664} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{14656} = \frac{x}{3664} - \frac{{\color{red}{\sin{\left(v \right)}}}}{14656}$$
次のことを思い出してください $$$v=4 x$$$:
$$\frac{x}{3664} - \frac{\sin{\left({\color{red}{v}} \right)}}{14656} = \frac{x}{3664} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{14656}$$
したがって、
$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}$$
積分定数を加える:
$$\int{\frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916} d x} = \frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}+C$$
解答
$$$\int \frac{\sin{\left(x \right)} \sin{\left(2 x \right)} \cos{\left(x \right)}}{916}\, dx = \left(\frac{x}{3664} - \frac{\sin{\left(4 x \right)}}{14656}\right) + C$$$A