$$$\sin{\left(2 x \right)} - \cos{\left(2 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\sin{\left(2 x \right)} - \cos{\left(2 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)\, dx$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(\int{\sin{\left(2 x \right)} d x} - \int{\cos{\left(2 x \right)} d x}\right)}}$$

$$$u=2 x$$$라 하자.

그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$$\int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = \int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$\int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = \int{\sin{\left(2 x \right)} d x} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\int{\sin{\left(2 x \right)} d x} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \int{\sin{\left(2 x \right)} d x} - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

다음 $$$u=2 x$$$을 기억하라:

$$\int{\sin{\left(2 x \right)} d x} - \frac{\sin{\left({\color{red}{u}} \right)}}{2} = \int{\sin{\left(2 x \right)} d x} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

$$$u=2 x$$$라 하자.

그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$$- \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = - \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$에 적용하세요:

$$- \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = - \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\sin{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = - \frac{\sin{\left(2 x \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$

다음 $$$u=2 x$$$을 기억하라:

$$- \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

따라서,

$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left(2 x \right)}}{2}$$

간단히 하시오:

$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2}$$

적분 상수를 추가하세요:

$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2}+C$$

정답

$$$\int \left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)\, dx = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2} + C$$$A


Please try a new game Rotatly