Integral of $$$\sin{\left(2 x \right)} - \cos{\left(2 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(\int{\sin{\left(2 x \right)} d x} - \int{\cos{\left(2 x \right)} d x}\right)}}$$
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
The integral can be rewritten as
$$\int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = \int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\int{\sin{\left(2 x \right)} d x} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = \int{\sin{\left(2 x \right)} d x} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\int{\sin{\left(2 x \right)} d x} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \int{\sin{\left(2 x \right)} d x} - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
Recall that $$$u=2 x$$$:
$$\int{\sin{\left(2 x \right)} d x} - \frac{\sin{\left({\color{red}{u}} \right)}}{2} = \int{\sin{\left(2 x \right)} d x} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
The integral can be rewritten as
$$- \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = - \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = - \frac{\sin{\left(2 x \right)}}{2} + {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\sin{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = - \frac{\sin{\left(2 x \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Recall that $$$u=2 x$$$:
$$- \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Therefore,
$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2} - \frac{\cos{\left(2 x \right)}}{2}$$
Simplify:
$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2}$$
Add the constant of integration:
$$\int{\left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)d x} = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2}+C$$
Answer
$$$\int \left(\sin{\left(2 x \right)} - \cos{\left(2 x \right)}\right)\, dx = - \frac{\sqrt{2} \sin{\left(2 x + \frac{\pi}{4} \right)}}{2} + C$$$A