$$$\frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}}\, dx$$$을(를) 구하시오.

풀이

$$$u=8 x$$$라 하자.

그러면 $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{8}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(2 u \right)}}{8 \cos{\left(u \right)}} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \frac{\sin{\left(2 u \right)}}{\cos{\left(u \right)}}$$$에 적용하세요:

$${\color{red}{\int{\frac{\sin{\left(2 u \right)}}{8 \cos{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{\sin{\left(2 u \right)}}{\cos{\left(u \right)}} d u}}{8}\right)}}$$

피적분함수를 다시 쓰십시오:

$$\frac{{\color{red}{\int{\frac{\sin{\left(2 u \right)}}{\cos{\left(u \right)}} d u}}}}{8} = \frac{{\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{8}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=2$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$에 적용하세요:

$$\frac{{\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{8} = \frac{{\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{8}$$

사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

다음 $$$u=8 x$$$을 기억하라:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(8 x\right)}} \right)}}{4}$$

따라서,

$$\int{\frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}} d x} = - \frac{\cos{\left(8 x \right)}}{4}$$

적분 상수를 추가하세요:

$$\int{\frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}} d x} = - \frac{\cos{\left(8 x \right)}}{4}+C$$

정답

$$$\int \frac{\sin{\left(16 x \right)}}{\cos{\left(8 x \right)}}\, dx = - \frac{\cos{\left(8 x \right)}}{4} + C$$$A


Please try a new game Rotatly