$$$\cos{\left(x \right)} \cos{\left(3 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx$$$을(를) 구하시오.
풀이
공식 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$을 사용하여 $$$\alpha=x$$$ 및 $$$\beta=3 x$$$에 대해 피적분함수를 다시 쓰십시오.:
$${\color{red}{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \cos{\left(2 x \right)} + \cos{\left(4 x \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}{2}\right)}}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(2 x \right)} d x} + \int{\cos{\left(4 x \right)} d x}\right)}}}{2}$$
$$$u=2 x$$$라 하자.
그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
다음 $$$u=2 x$$$을 기억하라:
$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
$$$u=4 x$$$라 하자.
그러면 $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{4}$$$임을 얻습니다.
따라서,
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$
다음 $$$u=4 x$$$을 기억하라:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$
따라서,
$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}$$
간단히 하시오:
$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \sin{\left(x \right)} \cos^{3}{\left(x \right)}$$
적분 상수를 추가하세요:
$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \sin{\left(x \right)} \cos^{3}{\left(x \right)}+C$$
정답
$$$\int \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx = \sin{\left(x \right)} \cos^{3}{\left(x \right)} + C$$$A