Integral dari $$$\cos{\left(x \right)} \cos{\left(3 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\cos{\left(x \right)} \cos{\left(3 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx$$$.

Solusi

Tulis ulang integran menggunakan rumus $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ dengan $$$\alpha=x$$$ dan $$$\beta=3 x$$$:

$${\color{red}{\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \cos{\left(2 x \right)} + \cos{\left(4 x \right)}$$$:

$${\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}{2}\right)}}$$

Integralkan suku demi suku:

$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + \cos{\left(4 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(2 x \right)} d x} + \int{\cos{\left(4 x \right)} d x}\right)}}}{2}$$

Misalkan $$$u=2 x$$$.

Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$

Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$

Ingat bahwa $$$u=2 x$$$:

$$\frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\int{\cos{\left(4 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

Misalkan $$$u=4 x$$$.

Kemudian $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{4}$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{4}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$

Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$

Ingat bahwa $$$u=4 x$$$:

$$\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$

Oleh karena itu,

$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{8}$$

Sederhanakan:

$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \sin{\left(x \right)} \cos^{3}{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\cos{\left(x \right)} \cos{\left(3 x \right)} d x} = \sin{\left(x \right)} \cos^{3}{\left(x \right)}+C$$

Jawaban

$$$\int \cos{\left(x \right)} \cos{\left(3 x \right)}\, dx = \sin{\left(x \right)} \cos^{3}{\left(x \right)} + C$$$A


Please try a new game Rotatly