$$$\cos^{6}{\left(2 x \right)}$$$의 적분
사용자 입력
$$$\int \cos^{6}{\left(2 x \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=2 x$$$라 하자.
그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\cos^{6}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{6}{\left(u \right)}}{2} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \cos^{6}{\left(u \right)}$$$에 적용하세요:
$${\color{red}{\int{\frac{\cos^{6}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cos^{6}{\left(u \right)} d u}}{2}\right)}}$$
멱 감소 공식 $$$\cos^{6}{\left(\alpha \right)} = \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} + \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$를 $$$\alpha= u $$$에 적용하세요:
$$\frac{{\color{red}{\int{\cos^{6}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(\frac{15 \cos{\left(2 u \right)}}{32} + \frac{3 \cos{\left(4 u \right)}}{16} + \frac{\cos{\left(6 u \right)}}{32} + \frac{5}{16}\right)d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{32}$$$와 $$$f{\left(u \right)} = 15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} + \cos{\left(6 u \right)} + 10$$$에 적용하세요:
$$\frac{{\color{red}{\int{\left(\frac{15 \cos{\left(2 u \right)}}{32} + \frac{3 \cos{\left(4 u \right)}}{16} + \frac{\cos{\left(6 u \right)}}{32} + \frac{5}{16}\right)d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\left(15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} + \cos{\left(6 u \right)} + 10\right)d u}}{32}\right)}}}{2}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(15 \cos{\left(2 u \right)} + 6 \cos{\left(4 u \right)} + \cos{\left(6 u \right)} + 10\right)d u}}}}{64} = \frac{{\color{red}{\left(\int{10 d u} + \int{15 \cos{\left(2 u \right)} d u} + \int{6 \cos{\left(4 u \right)} d u} + \int{\cos{\left(6 u \right)} d u}\right)}}}{64}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=10$$$에 적용하십시오:
$$\frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\int{10 d u}}}}{64} = \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{6 \cos{\left(4 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\left(10 u\right)}}}{64}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=6$$$와 $$$f{\left(u \right)} = \cos{\left(4 u \right)}$$$에 적용하세요:
$$\frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\int{6 \cos{\left(4 u \right)} d u}}}}{64} = \frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\left(6 \int{\cos{\left(4 u \right)} d u}\right)}}}{64}$$
$$$v=4 u$$$라 하자.
그러면 $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{4}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$\frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\int{\cos{\left(4 u \right)} d u}}}}{32} = \frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{32}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:
$$\frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{32} = \frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{32}$$
코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = \frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 {\color{red}{\sin{\left(v \right)}}}}{128}$$
다음 $$$v=4 u$$$을 기억하라:
$$\frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 \sin{\left({\color{red}{v}} \right)}}{128} = \frac{5 u}{32} + \frac{\int{15 \cos{\left(2 u \right)} d u}}{64} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{3 \sin{\left({\color{red}{\left(4 u\right)}} \right)}}{128}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=15$$$와 $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$에 적용하세요:
$$\frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\int{15 \cos{\left(2 u \right)} d u}}}}{64} = \frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{{\color{red}{\left(15 \int{\cos{\left(2 u \right)} d u}\right)}}}{64}$$
$$$v=2 u$$$라 하자.
그러면 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{2}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$\frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{64} = \frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{64}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:
$$\frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{64} = \frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{64}$$
코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = \frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 {\color{red}{\sin{\left(v \right)}}}}{128}$$
다음 $$$v=2 u$$$을 기억하라:
$$\frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 \sin{\left({\color{red}{v}} \right)}}{128} = \frac{5 u}{32} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\int{\cos{\left(6 u \right)} d u}}{64} + \frac{15 \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{128}$$
$$$v=6 u$$$라 하자.
그러면 $$$dv=\left(6 u\right)^{\prime }du = 6 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{6}$$$임을 얻습니다.
따라서,
$$\frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(6 u \right)} d u}}}}{64} = \frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{6} d v}}}}{64}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{6}$$$와 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:
$$\frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{6} d v}}}}{64} = \frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{6}\right)}}}{64}$$
코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{384} = \frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{{\color{red}{\sin{\left(v \right)}}}}{384}$$
다음 $$$v=6 u$$$을 기억하라:
$$\frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\sin{\left({\color{red}{v}} \right)}}{384} = \frac{5 u}{32} + \frac{15 \sin{\left(2 u \right)}}{128} + \frac{3 \sin{\left(4 u \right)}}{128} + \frac{\sin{\left({\color{red}{\left(6 u\right)}} \right)}}{384}$$
다음 $$$u=2 x$$$을 기억하라:
$$\frac{15 \sin{\left(2 {\color{red}{u}} \right)}}{128} + \frac{3 \sin{\left(4 {\color{red}{u}} \right)}}{128} + \frac{\sin{\left(6 {\color{red}{u}} \right)}}{384} + \frac{5 {\color{red}{u}}}{32} = \frac{15 \sin{\left(2 {\color{red}{\left(2 x\right)}} \right)}}{128} + \frac{3 \sin{\left(4 {\color{red}{\left(2 x\right)}} \right)}}{128} + \frac{\sin{\left(6 {\color{red}{\left(2 x\right)}} \right)}}{384} + \frac{5 {\color{red}{\left(2 x\right)}}}{32}$$
따라서,
$$\int{\cos^{6}{\left(2 x \right)} d x} = \frac{5 x}{16} + \frac{15 \sin{\left(4 x \right)}}{128} + \frac{3 \sin{\left(8 x \right)}}{128} + \frac{\sin{\left(12 x \right)}}{384}$$
간단히 하시오:
$$\int{\cos^{6}{\left(2 x \right)} d x} = \frac{120 x + 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} + \sin{\left(12 x \right)}}{384}$$
적분 상수를 추가하세요:
$$\int{\cos^{6}{\left(2 x \right)} d x} = \frac{120 x + 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} + \sin{\left(12 x \right)}}{384}+C$$
정답
$$$\int \cos^{6}{\left(2 x \right)}\, dx = \frac{120 x + 45 \sin{\left(4 x \right)} + 9 \sin{\left(8 x \right)} + \sin{\left(12 x \right)}}{384} + C$$$A