$$$\frac{x^{2}}{2} - 2 x$$$의 적분
사용자 입력
$$$\int \left(\frac{x^{2}}{2} - 2 x\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(\frac{x^{2}}{2} - 2 x\right)d x}}} = {\color{red}{\left(- \int{2 x d x} + \int{\frac{x^{2}}{2} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용하세요:
$$- \int{2 x d x} + {\color{red}{\int{\frac{x^{2}}{2} d x}}} = - \int{2 x d x} + {\color{red}{\left(\frac{\int{x^{2} d x}}{2}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \int{2 x d x} + \frac{{\color{red}{\int{x^{2} d x}}}}{2}=- \int{2 x d x} + \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2}=- \int{2 x d x} + \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$\frac{x^{3}}{6} - {\color{red}{\int{2 x d x}}} = \frac{x^{3}}{6} - {\color{red}{\left(2 \int{x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\frac{x^{3}}{6} - 2 {\color{red}{\int{x d x}}}=\frac{x^{3}}{6} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{6} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
따라서,
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{3}}{6} - x^{2}$$
간단히 하시오:
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{2} \left(x - 6\right)}{6}$$
적분 상수를 추가하세요:
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{2} \left(x - 6\right)}{6}+C$$
정답
$$$\int \left(\frac{x^{2}}{2} - 2 x\right)\, dx = \frac{x^{2} \left(x - 6\right)}{6} + C$$$A