$$$\frac{x^{2}}{2} - 2 x$$$ 的積分
您的輸入
求$$$\int \left(\frac{x^{2}}{2} - 2 x\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\frac{x^{2}}{2} - 2 x\right)d x}}} = {\color{red}{\left(- \int{2 x d x} + \int{\frac{x^{2}}{2} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = x^{2}$$$:
$$- \int{2 x d x} + {\color{red}{\int{\frac{x^{2}}{2} d x}}} = - \int{2 x d x} + {\color{red}{\left(\frac{\int{x^{2} d x}}{2}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$- \int{2 x d x} + \frac{{\color{red}{\int{x^{2} d x}}}}{2}=- \int{2 x d x} + \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2}=- \int{2 x d x} + \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = x$$$:
$$\frac{x^{3}}{6} - {\color{red}{\int{2 x d x}}} = \frac{x^{3}}{6} - {\color{red}{\left(2 \int{x d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$\frac{x^{3}}{6} - 2 {\color{red}{\int{x d x}}}=\frac{x^{3}}{6} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{3}}{6} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{3}}{6} - x^{2}$$
化簡:
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{2} \left(x - 6\right)}{6}$$
加上積分常數:
$$\int{\left(\frac{x^{2}}{2} - 2 x\right)d x} = \frac{x^{2} \left(x - 6\right)}{6}+C$$
答案
$$$\int \left(\frac{x^{2}}{2} - 2 x\right)\, dx = \frac{x^{2} \left(x - 6\right)}{6} + C$$$A