$$$\frac{1}{x \left(x - 1\right)^{2}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{1}{x \left(x - 1\right)^{2}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{x \left(x - 1\right)^{2}}\, dx$$$을(를) 구하시오.

풀이

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$${\color{red}{\int{\frac{1}{x \left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} + \frac{1}{x}\right)d x}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} + \int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x}\right)}}$$

$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = \int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

$$$u=x - 1$$$라 하자.

그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{u^{-2} d u}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\left(- u^{-1}\right)}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\left(- \frac{1}{u}\right)}}$$

다음 $$$u=x - 1$$$을 기억하라:

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} - {\color{red}{u}}^{-1} = \ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} - {\color{red}{\left(x - 1\right)}}^{-1}$$

$$$u=x - 1$$$라 하자.

그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x - 1} d x}}} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}} - \frac{1}{x - 1}$$

다음 $$$u=x - 1$$$을 기억하라:

$$\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \frac{1}{x - 1}$$

따라서,

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)} - \frac{1}{x - 1}$$

간단히 하시오:

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}\right) - 1}{x - 1}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}\right) - 1}{x - 1}+C$$

정답

$$$\int \frac{1}{x \left(x - 1\right)^{2}}\, dx = \frac{\left(x - 1\right) \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{x - 1}\right|\right)\right) - 1}{x - 1} + C$$$A


Please try a new game Rotatly