$$$\frac{1}{x \left(x - 1\right)^{2}}$$$ 的积分

该计算器将求出$$$\frac{1}{x \left(x - 1\right)^{2}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{x \left(x - 1\right)^{2}}\, dx$$$

解答

进行部分分式分解(步骤可见»):

$${\color{red}{\int{\frac{1}{x \left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} + \frac{1}{x}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} + \int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x}\right)}}$$

$$$\frac{1}{x}$$$ 的积分为 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = \int{\frac{1}{\left(x - 1\right)^{2}} d x} - \int{\frac{1}{x - 1} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

该积分可以改写为

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\int{u^{-2} d u}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\left(- u^{-1}\right)}}=\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} + {\color{red}{\left(- \frac{1}{u}\right)}}$$

回忆一下 $$$u=x - 1$$$:

$$\ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} - {\color{red}{u}}^{-1} = \ln{\left(\left|{x}\right| \right)} - \int{\frac{1}{x - 1} d x} - {\color{red}{\left(x - 1\right)}}^{-1}$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

所以,

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x - 1} d x}}} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}} - \frac{1}{x - 1}$$

回忆一下 $$$u=x - 1$$$:

$$\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \frac{1}{x - 1} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \frac{1}{x - 1}$$

因此,

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)} - \frac{1}{x - 1}$$

化简:

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}\right) - 1}{x - 1}$$

加上积分常数:

$$\int{\frac{1}{x \left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}\right) - 1}{x - 1}+C$$

答案

$$$\int \frac{1}{x \left(x - 1\right)^{2}}\, dx = \frac{\left(x - 1\right) \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{x - 1}\right|\right)\right) - 1}{x - 1} + C$$$A


Please try a new game Rotatly