$$$\frac{1}{x^{2} \sqrt{64 - x^{2}}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{1}{x^{2} \sqrt{64 - x^{2}}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{x^{2} \sqrt{64 - x^{2}}}\, dx$$$을(를) 구하시오.

풀이

$$$x=8 \sin{\left(u \right)}$$$라 하자.

따라서 $$$dx=\left(8 \sin{\left(u \right)}\right)^{\prime }du = 8 \cos{\left(u \right)} du$$$ (풀이 과정은 »에서 볼 수 있습니다).

또한 $$$u=\operatorname{asin}{\left(\frac{x}{8} \right)}$$$가 성립한다.

따라서,

$$$\frac{1}{x^{2} \sqrt{64 - x^{2}}} = \frac{1}{64 \sqrt{64 - 64 \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

$$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ 항등식을 사용하시오:

$$$\frac{1}{64 \sqrt{64 - 64 \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{512 \sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{512 \sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

$$$\cos{\left( u \right)} \ge 0$$$라고 가정하면, 다음을 얻습니다:

$$$\frac{1}{512 \sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{512 \sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$

적분은 다음과 같이 다시 쓸 수 있습니다

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{64 \sin^{2}{\left(u \right)}} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{64}$$$$$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$에 적용하세요:

$${\color{red}{\int{\frac{1}{64 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{64}\right)}}$$

피적분함수를 코시컨트 함수로 다시 쓰시오:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{64} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{64}$$

$$$\csc^{2}{\left(u \right)}$$$의 적분은 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{64} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{64}$$

다음 $$$u=\operatorname{asin}{\left(\frac{x}{8} \right)}$$$을 기억하라:

$$- \frac{\cot{\left({\color{red}{u}} \right)}}{64} = - \frac{\cot{\left({\color{red}{\operatorname{asin}{\left(\frac{x}{8} \right)}}} \right)}}{64}$$

따라서,

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{1 - \frac{x^{2}}{64}}}{8 x}$$

간단히 하시오:

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{64 - x^{2}}}{64 x}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{64 - x^{2}}}{64 x}+C$$

정답

$$$\int \frac{1}{x^{2} \sqrt{64 - x^{2}}}\, dx = - \frac{\sqrt{64 - x^{2}}}{64 x} + C$$$A


Please try a new game Rotatly