$$$\frac{1}{x^{2} \sqrt{64 - x^{2}}}$$$ 的積分

此計算器將求出 $$$\frac{1}{x^{2} \sqrt{64 - x^{2}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{x^{2} \sqrt{64 - x^{2}}}\, dx$$$

解答

$$$x=8 \sin{\left(u \right)}$$$

$$$dx=\left(8 \sin{\left(u \right)}\right)^{\prime }du = 8 \cos{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{x}{8} \right)}$$$

被積函數變為

$$$\frac{1}{x^{2} \sqrt{64 - x^{2}}} = \frac{1}{64 \sqrt{64 - 64 \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\frac{1}{64 \sqrt{64 - 64 \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{512 \sqrt{1 - \sin^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}=\frac{1}{512 \sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}}$$$

假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{512 \sqrt{\cos^{2}{\left( u \right)}} \sin^{2}{\left( u \right)}} = \frac{1}{512 \sin^{2}{\left( u \right)} \cos{\left( u \right)}}$$$

因此,

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{64 \sin^{2}{\left(u \right)}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{64}$$$$$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$

$${\color{red}{\int{\frac{1}{64 \sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}{64}\right)}}$$

將被積函數改寫為以餘割函數表示:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}}{64} = \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{64}$$

$$$\csc^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$

$$\frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{64} = \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{64}$$

回顧一下 $$$u=\operatorname{asin}{\left(\frac{x}{8} \right)}$$$

$$- \frac{\cot{\left({\color{red}{u}} \right)}}{64} = - \frac{\cot{\left({\color{red}{\operatorname{asin}{\left(\frac{x}{8} \right)}}} \right)}}{64}$$

因此,

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{1 - \frac{x^{2}}{64}}}{8 x}$$

化簡:

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{64 - x^{2}}}{64 x}$$

加上積分常數:

$$\int{\frac{1}{x^{2} \sqrt{64 - x^{2}}} d x} = - \frac{\sqrt{64 - x^{2}}}{64 x}+C$$

答案

$$$\int \frac{1}{x^{2} \sqrt{64 - x^{2}}}\, dx = - \frac{\sqrt{64 - x^{2}}}{64 x} + C$$$A


Please try a new game Rotatly