$$$x$$$에 대한 $$$\frac{c}{x \left(c - x\right)}$$$의 적분

계산기는 $$$x$$$에 대한 $$$\frac{c}{x \left(c - x\right)}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{c}{x \left(c - x\right)}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=c$$$$$$f{\left(x \right)} = \frac{1}{x \left(c - x\right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{c}{x \left(c - x\right)} d x}}} = {\color{red}{c \int{\frac{1}{x \left(c - x\right)} d x}}}$$

부분분수 분해 수행:

$$c {\color{red}{\int{\frac{1}{x \left(c - x\right)} d x}}} = c {\color{red}{\int{\left(\frac{1}{c \left(c - x\right)} + \frac{1}{c x}\right)d x}}}$$

각 항별로 적분하십시오:

$$c {\color{red}{\int{\left(\frac{1}{c \left(c - x\right)} + \frac{1}{c x}\right)d x}}} = c {\color{red}{\left(\int{\frac{1}{c x} d x} + \int{\frac{1}{c \left(c - x\right)} d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{c}$$$$$$f{\left(x \right)} = \frac{1}{x}$$$에 적용하세요:

$$c \left(\int{\frac{1}{c \left(c - x\right)} d x} + {\color{red}{\int{\frac{1}{c x} d x}}}\right) = c \left(\int{\frac{1}{c \left(c - x\right)} d x} + {\color{red}{\frac{\int{\frac{1}{x} d x}}{c}}}\right)$$

$$$\frac{1}{x}$$$의 적분은 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$c \left(\int{\frac{1}{c \left(c - x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{c}\right) = c \left(\int{\frac{1}{c \left(c - x\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{c}\right)$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{c}$$$$$$f{\left(x \right)} = \frac{1}{c - x}$$$에 적용하세요:

$$c \left({\color{red}{\int{\frac{1}{c \left(c - x\right)} d x}}} + \frac{\ln{\left(\left|{x}\right| \right)}}{c}\right) = c \left({\color{red}{\frac{\int{\frac{1}{c - x} d x}}{c}}} + \frac{\ln{\left(\left|{x}\right| \right)}}{c}\right)$$

$$$u=c - x$$$라 하자.

그러면 $$$du=\left(c - x\right)^{\prime }dx = - dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - du$$$임을 얻습니다.

따라서,

$$c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} + \frac{{\color{red}{\int{\frac{1}{c - x} d x}}}}{c}\right) = c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} + \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{c}\right)$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:

$$c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} + \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{c}\right) = c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} + \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{c}\right)$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{c}\right) = c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{c}\right)$$

다음 $$$u=c - x$$$을 기억하라:

$$c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{c}\right) = c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} - \frac{\ln{\left(\left|{{\color{red}{\left(c - x\right)}}}\right| \right)}}{c}\right)$$

따라서,

$$\int{\frac{c}{x \left(c - x\right)} d x} = c \left(\frac{\ln{\left(\left|{x}\right| \right)}}{c} - \frac{\ln{\left(\left|{c - x}\right| \right)}}{c}\right)$$

간단히 하시오:

$$\int{\frac{c}{x \left(c - x\right)} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{c - x}\right| \right)}$$

적분 상수를 추가하세요:

$$\int{\frac{c}{x \left(c - x\right)} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{c - x}\right| \right)}+C$$

정답

$$$\int \frac{c}{x \left(c - x\right)}\, dx = \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{c - x}\right|\right)\right) + C$$$A


Please try a new game Rotatly