$$$\frac{3 x^{4}}{- 2 x^{4} + x^{3}}$$$의 적분
사용자 입력
$$$\int \frac{3 x^{4}}{- 2 x^{4} + x^{3}}\, dx$$$을(를) 구하시오.
풀이
피적분함수를 단순화하세요.:
$${\color{red}{\int{\frac{3 x^{4}}{- 2 x^{4} + x^{3}} d x}}} = {\color{red}{\int{\left(- \frac{3 x}{2 x - 1}\right)d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-3$$$와 $$$f{\left(x \right)} = \frac{x}{2 x - 1}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{3 x}{2 x - 1}\right)d x}}} = {\color{red}{\left(- 3 \int{\frac{x}{2 x - 1} d x}\right)}}$$
피적분함수의 분자를 $$$x=\frac{1}{2}\left(2 x - 1\right)+\frac{1}{2}$$$로 다시 쓰고 분수를 분해하세요:
$$- 3 {\color{red}{\int{\frac{x}{2 x - 1} d x}}} = - 3 {\color{red}{\int{\left(\frac{1}{2} + \frac{1}{2 \left(2 x - 1\right)}\right)d x}}}$$
각 항별로 적분하십시오:
$$- 3 {\color{red}{\int{\left(\frac{1}{2} + \frac{1}{2 \left(2 x - 1\right)}\right)d x}}} = - 3 {\color{red}{\left(\int{\frac{1}{2} d x} + \int{\frac{1}{2 \left(2 x - 1\right)} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=\frac{1}{2}$$$에 적용하십시오:
$$- 3 \int{\frac{1}{2 \left(2 x - 1\right)} d x} - 3 {\color{red}{\int{\frac{1}{2} d x}}} = - 3 \int{\frac{1}{2 \left(2 x - 1\right)} d x} - 3 {\color{red}{\left(\frac{x}{2}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = \frac{1}{2 x - 1}$$$에 적용하세요:
$$- \frac{3 x}{2} - 3 {\color{red}{\int{\frac{1}{2 \left(2 x - 1\right)} d x}}} = - \frac{3 x}{2} - 3 {\color{red}{\left(\frac{\int{\frac{1}{2 x - 1} d x}}{2}\right)}}$$
$$$u=2 x - 1$$$라 하자.
그러면 $$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$$- \frac{3 x}{2} - \frac{3 {\color{red}{\int{\frac{1}{2 x - 1} d x}}}}{2} = - \frac{3 x}{2} - \frac{3 {\color{red}{\int{\frac{1}{2 u} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$- \frac{3 x}{2} - \frac{3 {\color{red}{\int{\frac{1}{2 u} d u}}}}{2} = - \frac{3 x}{2} - \frac{3 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}}{2}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{3 x}{2} - \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{3 x}{2} - \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
다음 $$$u=2 x - 1$$$을 기억하라:
$$- \frac{3 x}{2} - \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{3 x}{2} - \frac{3 \ln{\left(\left|{{\color{red}{\left(2 x - 1\right)}}}\right| \right)}}{4}$$
따라서,
$$\int{\frac{3 x^{4}}{- 2 x^{4} + x^{3}} d x} = - \frac{3 x}{2} - \frac{3 \ln{\left(\left|{2 x - 1}\right| \right)}}{4}$$
간단히 하시오:
$$\int{\frac{3 x^{4}}{- 2 x^{4} + x^{3}} d x} = - \frac{3 \left(2 x + \ln{\left(\left|{2 x - 1}\right| \right)}\right)}{4}$$
적분 상수를 추가하세요:
$$\int{\frac{3 x^{4}}{- 2 x^{4} + x^{3}} d x} = - \frac{3 \left(2 x + \ln{\left(\left|{2 x - 1}\right| \right)}\right)}{4}+C$$
정답
$$$\int \frac{3 x^{4}}{- 2 x^{4} + x^{3}}\, dx = - \frac{3 \left(2 x + \ln\left(\left|{2 x - 1}\right|\right)\right)}{4} + C$$$A