$$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx$$$을(를) 구하시오.

풀이

멱 감소 공식 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha=x$$$에 적용하세요:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}}$$

멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=x$$$에 적용하세요:

$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4}$$

각 항별로 적분하십시오:

$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{4}$$

$$$u=\cos{\left(2 x \right)}$$$라 하자.

그러면 $$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = u^{2}$$$에 적용하세요:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \frac{\int{u^{2} d u}}{2}\right)}}}{4}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\int{u^{2} d u}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{8}$$

다음 $$$u=\cos{\left(2 x \right)}$$$을 기억하라:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{u}}^{3}}{24} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\cos{\left(2 x \right)}}}^{3}}{24}$$

$$$u=2 x$$$라 하자.

그러면 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.

따라서,

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$에 적용하세요:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$

사인 함수의 적분은 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$

다음 $$$u=2 x$$$을 기억하라:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$

따라서,

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left(2 x \right)}}{8}$$

간단히 하시오:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}$$

적분 상수를 추가하세요:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}+C$$

정답

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24} + C$$$A


Please try a new game Rotatly