Integral de $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx$$$.

Solución

Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}}$$

Aplica la fórmula de reducción de potencia $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=x$$$:

$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}$$$:

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{4}$$

Sea $$$u=\cos{\left(2 x \right)}$$$.

Entonces $$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$.

La integral se convierte en

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{2}$$$ y $$$f{\left(u \right)} = u^{2}$$$:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \frac{\int{u^{2} d u}}{2}\right)}}}{4}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\int{u^{2} d u}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{8}$$

Recordemos que $$$u=\cos{\left(2 x \right)}$$$:

$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{u}}^{3}}{24} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\cos{\left(2 x \right)}}}^{3}}{24}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

La integral puede reescribirse como

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$

La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$

Recordemos que $$$u=2 x$$$:

$$\frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$

Por lo tanto,

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left(2 x \right)}}{8}$$

Simplificar:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}$$

Añade la constante de integración:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}+C$$

Respuesta

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24} + C$$$A


Please try a new game Rotatly