Integral de $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx$$$.
Solución
Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}}$$
Aplica la fórmula de reducción de potencia $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=x$$$:
$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}$$$:
$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}{4}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \left(\cos{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4}$$
Integra término a término:
$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{4}$$
Sea $$$u=\cos{\left(2 x \right)}$$$.
Entonces $$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$.
La integral se convierte en
$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{1}{2}$$$ y $$$f{\left(u \right)} = u^{2}$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(- \frac{u^{2}}{2}\right)d u}}}}{4} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \frac{\int{u^{2} d u}}{2}\right)}}}{4}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\int{u^{2} d u}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{8}=\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{8}$$
Recordemos que $$$u=\cos{\left(2 x \right)}$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{u}}^{3}}{24} = \frac{\int{\sin{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\cos{\left(2 x \right)}}}^{3}}{24}$$
Sea $$$u=2 x$$$.
Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.
La integral puede reescribirse como
$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Recordemos que $$$u=2 x$$$:
$$\frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Por lo tanto,
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\cos^{3}{\left(2 x \right)}}{24} - \frac{\cos{\left(2 x \right)}}{8}$$
Simplificar:
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}$$
Añade la constante de integración:
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24}+C$$
Respuesta
$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{24} + C$$$A