정적분 및 가적분 계산기

정적분과 광의적분을 단계별로 계산하세요

이 계산기는 단계별 풀이를 보여 주면서 상한과 하한이 있는 정적분(진정적분 포함)을 계산하려고 시도합니다.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{\frac{\pi}{2}}^{\frac{\pi}{3}}\left( 36 \cos^{2}{\left(\theta \right)} \right)d\theta$$$

First, calculate the corresponding indefinite integral: $$$\int{36 \cos^{2}{\left(\theta \right)} d \theta}=18 \theta + 9 \sin{\left(2 \theta \right)}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(18 \theta + 9 \sin{\left(2 \theta \right)}\right)|_{\left(\theta=\frac{\pi}{3}\right)}=\frac{9 \sqrt{3}}{2} + 6 \pi$$$

$$$\left(18 \theta + 9 \sin{\left(2 \theta \right)}\right)|_{\left(\theta=\frac{\pi}{2}\right)}=9 \pi$$$

$$$\int_{\frac{\pi}{2}}^{\frac{\pi}{3}}\left( 36 \cos^{2}{\left(\theta \right)} \right)d\theta=\left(18 \theta + 9 \sin{\left(2 \theta \right)}\right)|_{\left(\theta=\frac{\pi}{3}\right)}-\left(18 \theta + 9 \sin{\left(2 \theta \right)}\right)|_{\left(\theta=\frac{\pi}{2}\right)}=- 3 \pi + \frac{9 \sqrt{3}}{2}$$$

Answer: $$$\int_{\frac{\pi}{2}}^{\frac{\pi}{3}}\left( 36 \cos^{2}{\left(\theta \right)} \right)d\theta=- 3 \pi + \frac{9 \sqrt{3}}{2}\approx -1.63054932670943$$$


Please try a new game Rotatly