정적분 및 가적분 계산기
정적분과 광의적분을 단계별로 계산하세요
이 계산기는 단계별 풀이를 보여 주면서 상한과 하한이 있는 정적분(진정적분 포함)을 계산하려고 시도합니다.
Solution
Your input: calculate $$$\int_{3}^{11}\left( \frac{y^{\frac{3}{2}}}{3} - \sqrt{y} \right)dy$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(\frac{y^{\frac{3}{2}}}{3} - \sqrt{y}\right)d y}=\frac{2 y^{\frac{3}{2}} \left(y - 5\right)}{15}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{2 y^{\frac{3}{2}} \left(y - 5\right)}{15}\right)|_{\left(y=11\right)}=\frac{44 \sqrt{11}}{5}$$$
$$$\left(\frac{2 y^{\frac{3}{2}} \left(y - 5\right)}{15}\right)|_{\left(y=3\right)}=- \frac{4 \sqrt{3}}{5}$$$
$$$\int_{3}^{11}\left( \frac{y^{\frac{3}{2}}}{3} - \sqrt{y} \right)dy=\left(\frac{2 y^{\frac{3}{2}} \left(y - 5\right)}{15}\right)|_{\left(y=11\right)}-\left(\frac{2 y^{\frac{3}{2}} \left(y - 5\right)}{15}\right)|_{\left(y=3\right)}=\frac{4 \sqrt{3}}{5} + \frac{44 \sqrt{11}}{5}$$$
Answer: $$$\int_{3}^{11}\left( \frac{y^{\frac{3}{2}}}{3} - \sqrt{y} \right)dy=\frac{4 \sqrt{3}}{5} + \frac{44 \sqrt{11}}{5}\approx 30.5719388011826$$$