정적분 및 가적분 계산기
정적분과 광의적분을 단계별로 계산하세요
이 계산기는 단계별 풀이를 보여 주면서 상한과 하한이 있는 정적분(진정적분 포함)을 계산하려고 시도합니다.
Solution
Your input: calculate $$$\int_{0}^{2}\left( 2 - e^{\frac{x}{2}} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(2 - e^{\frac{x}{2}}\right)d x}=2 \left(x - e^{\frac{x}{2}}\right)$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(2 \left(x - e^{\frac{x}{2}}\right)\right)|_{\left(x=2\right)}=4 - 2 e$$$
$$$\left(2 \left(x - e^{\frac{x}{2}}\right)\right)|_{\left(x=0\right)}=-2$$$
$$$\int_{0}^{2}\left( 2 - e^{\frac{x}{2}} \right)dx=\left(2 \left(x - e^{\frac{x}{2}}\right)\right)|_{\left(x=2\right)}-\left(2 \left(x - e^{\frac{x}{2}}\right)\right)|_{\left(x=0\right)}=6 - 2 e$$$
Answer: $$$\int_{0}^{2}\left( 2 - e^{\frac{x}{2}} \right)dx=6 - 2 e\approx 0.563436343081909$$$