$$$\frac{z_{0}^{4}}{1 - z_{0}}$$$의 도함수

계산기는 단계별 풀이와 함께 $$$\frac{z_{0}^{4}}{1 - z_{0}}$$$의 도함수를 구합니다.

관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)

자동 감지를 위해 비워 두세요.
특정 점에서의 도함수가 필요하지 않다면 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\frac{d}{dz_{0}} \left(\frac{z_{0}^{4}}{1 - z_{0}}\right)$$$을(를) 구하시오.

풀이

$$$f{\left(z_{0} \right)} = z_{0}^{4}$$$$$$g{\left(z_{0} \right)} = 1 - z_{0}$$$에 대해 몫의 미분법칙 $$$\frac{d}{dz_{0}} \left(\frac{f{\left(z_{0} \right)}}{g{\left(z_{0} \right)}}\right) = \frac{\frac{d}{dz_{0}} \left(f{\left(z_{0} \right)}\right) g{\left(z_{0} \right)} - f{\left(z_{0} \right)} \frac{d}{dz_{0}} \left(g{\left(z_{0} \right)}\right)}{g^{2}{\left(z_{0} \right)}}$$$을 적용하십시오:

$${\color{red}\left(\frac{d}{dz_{0}} \left(\frac{z_{0}^{4}}{1 - z_{0}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dz_{0}} \left(z_{0}^{4}\right) \left(1 - z_{0}\right) - z_{0}^{4} \frac{d}{dz_{0}} \left(1 - z_{0}\right)}{\left(1 - z_{0}\right)^{2}}\right)}$$

합/차의 도함수는 도함수들의 합/차이다:

$$\frac{- z_{0}^{4} {\color{red}\left(\frac{d}{dz_{0}} \left(1 - z_{0}\right)\right)} + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}} = \frac{- z_{0}^{4} {\color{red}\left(\frac{d}{dz_{0}} \left(1\right) - \frac{d}{dz_{0}} \left(z_{0}\right)\right)} + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}}$$

상수의 도함수는 $$$0$$$입니다:

$$\frac{- z_{0}^{4} \left({\color{red}\left(\frac{d}{dz_{0}} \left(1\right)\right)} - \frac{d}{dz_{0}} \left(z_{0}\right)\right) + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}} = \frac{- z_{0}^{4} \left({\color{red}\left(0\right)} - \frac{d}{dz_{0}} \left(z_{0}\right)\right) + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}}$$

멱법칙 $$$\frac{d}{dz_{0}} \left(z_{0}^{n}\right) = n z_{0}^{n - 1}$$$$$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dz_{0}} \left(z_{0}\right) = 1$$$:

$$\frac{z_{0}^{4} {\color{red}\left(\frac{d}{dz_{0}} \left(z_{0}\right)\right)} + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}} = \frac{z_{0}^{4} {\color{red}\left(1\right)} + \left(1 - z_{0}\right) \frac{d}{dz_{0}} \left(z_{0}^{4}\right)}{\left(1 - z_{0}\right)^{2}}$$

거듭제곱법칙 $$$\frac{d}{dz_{0}} \left(z_{0}^{n}\right) = n z_{0}^{n - 1}$$$$$$n = 4$$$에 적용합니다:

$$\frac{z_{0}^{4} + \left(1 - z_{0}\right) {\color{red}\left(\frac{d}{dz_{0}} \left(z_{0}^{4}\right)\right)}}{\left(1 - z_{0}\right)^{2}} = \frac{z_{0}^{4} + \left(1 - z_{0}\right) {\color{red}\left(4 z_{0}^{3}\right)}}{\left(1 - z_{0}\right)^{2}}$$

간단히 하시오:

$$\frac{z_{0}^{4} + 4 z_{0}^{3} \left(1 - z_{0}\right)}{\left(1 - z_{0}\right)^{2}} = \frac{z_{0}^{3} \left(4 - 3 z_{0}\right)}{\left(z_{0} - 1\right)^{2}}$$

따라서, $$$\frac{d}{dz_{0}} \left(\frac{z_{0}^{4}}{1 - z_{0}}\right) = \frac{z_{0}^{3} \left(4 - 3 z_{0}\right)}{\left(z_{0} - 1\right)^{2}}$$$.

정답

$$$\frac{d}{dz_{0}} \left(\frac{z_{0}^{4}}{1 - z_{0}}\right) = \frac{z_{0}^{3} \left(4 - 3 z_{0}\right)}{\left(z_{0} - 1\right)^{2}}$$$A


Please try a new game Rotatly