$$$x^{3} - 3 x^{2}$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right)$$$을(를) 구하시오.
풀이
합/차의 도함수는 도함수들의 합/차이다:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 3 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(3 x^{2}\right)\right)}$$상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = 3$$$와 $$$f{\left(x \right)} = x^{2}$$$에 적용합니다:
$$- {\color{red}\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(3 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 2$$$에 적용합니다:
$$- 3 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - 3 {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(x^{3}\right)$$거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 3$$$에 적용합니다:
$$- 6 x + {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = - 6 x + {\color{red}\left(3 x^{2}\right)}$$간단히 하시오:
$$3 x^{2} - 6 x = 3 x \left(x - 2\right)$$따라서, $$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right) = 3 x \left(x - 2\right)$$$.
정답
$$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right) = 3 x \left(x - 2\right)$$$A
Please try a new game Rotatly