$$$\frac{x}{2} - 450$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(\frac{x}{2} - 450\right)$$$을(를) 구하시오.
풀이
합/차의 도함수는 도함수들의 합/차이다:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} - 450\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) - \frac{d}{dx} \left(450\right)\right)}$$상수의 도함수는 $$$0$$$입니다:
$$- {\color{red}\left(\frac{d}{dx} \left(450\right)\right)} + \frac{d}{dx} \left(\frac{x}{2}\right) = - {\color{red}\left(0\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)$$상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = \frac{1}{2}$$$와 $$$f{\left(x \right)} = x$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{{\color{red}\left(1\right)}}{2}$$따라서, $$$\frac{d}{dx} \left(\frac{x}{2} - 450\right) = \frac{1}{2}$$$.
정답
$$$\frac{d}{dx} \left(\frac{x}{2} - 450\right) = \frac{1}{2}$$$A
Please try a new game Rotatly