$$$x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{dx} \left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$을 $$$c = \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}$$$와 $$$f{\left(x \right)} = x$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dx} \left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}\right)\right)} = {\color{red}\left(\sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} \frac{d}{dx} \left(x\right)\right)}$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} {\color{red}\left(1\right)}$$간단히 하시오:
$$\sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)} = \sqrt{\ln\left(\frac{4}{3}\right)}$$따라서, $$$\frac{d}{dx} \left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}\right) = \sqrt{\ln\left(\frac{4}{3}\right)}$$$.
정답
$$$\frac{d}{dx} \left(x \sqrt{- \ln\left(3\right) + 2 \ln\left(2\right)}\right) = \sqrt{\ln\left(\frac{4}{3}\right)}$$$A