$$$\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$의 도함수
관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)
사용자 입력
$$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)$$$을(를) 구하시오.
풀이
함수 $$$\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$는 두 함수 $$$f{\left(v \right)} = \tan{\left(v \right)}$$$와 $$$g{\left(u \right)} = \frac{u}{2} + \frac{\pi}{4}$$$의 합성함수 $$$f{\left(g{\left(u \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$을(를) 적용하십시오:
$${\color{red}\left(\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(\tan{\left(v \right)}\right) \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)\right)}$$탄젠트 함수의 도함수는 $$$\frac{d}{dv} \left(\tan{\left(v \right)}\right) = \sec^{2}{\left(v \right)}$$$:
$${\color{red}\left(\frac{d}{dv} \left(\tan{\left(v \right)}\right)\right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right) = {\color{red}\left(\sec^{2}{\left(v \right)}\right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)$$역치환:
$$\sec^{2}{\left({\color{red}\left(v\right)} \right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right) = \sec^{2}{\left({\color{red}\left(\frac{u}{2} + \frac{\pi}{4}\right)} \right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)$$합/차의 도함수는 도함수들의 합/차이다:
$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)\right)} = \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2}\right) + \frac{d}{du} \left(\frac{\pi}{4}\right)\right)}$$상수의 도함수는 $$$0$$$입니다:
$$\left({\color{red}\left(\frac{d}{du} \left(\frac{\pi}{4}\right)\right)} + \frac{d}{du} \left(\frac{u}{2}\right)\right) \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(0\right)} + \frac{d}{du} \left(\frac{u}{2}\right)\right) \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$상수배 법칙 $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$을 $$$c = \frac{1}{2}$$$와 $$$f{\left(u \right)} = u$$$에 적용합니다:
$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2}\right)\right)} = \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{\frac{d}{du} \left(u\right)}{2}\right)}$$멱법칙 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(u\right)\right)}}{2} = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(1\right)}}{2}$$간단히 하시오:
$$\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} = \frac{1}{1 - \sin{\left(u \right)}}$$따라서, $$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(u \right)}}$$$.
정답
$$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(u \right)}}$$$A