$$$\frac{\sqrt{2} y}{2}$$$의 도함수
사용자 입력
$$$\frac{d}{dy} \left(\frac{\sqrt{2} y}{2}\right)$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$을 $$$c = \frac{\sqrt{2}}{2}$$$와 $$$f{\left(y \right)} = y$$$에 적용합니다:
$${\color{red}\left(\frac{d}{dy} \left(\frac{\sqrt{2} y}{2}\right)\right)} = {\color{red}\left(\frac{\sqrt{2}}{2} \frac{d}{dy} \left(y\right)\right)}$$멱법칙 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$\frac{\sqrt{2} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)}}{2} = \frac{\sqrt{2} {\color{red}\left(1\right)}}{2}$$따라서, $$$\frac{d}{dy} \left(\frac{\sqrt{2} y}{2}\right) = \frac{\sqrt{2}}{2}$$$.
정답
$$$\frac{d}{dy} \left(\frac{\sqrt{2} y}{2}\right) = \frac{\sqrt{2}}{2}$$$A
Please try a new game Rotatly