$$$x$$$에 대한 $$$\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$의 도함수

이 계산기는 $$$x$$$에 대한 $$$\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$의 도함수를 단계별로 구합니다.

관련 계산기: 로그 미분 계산기, 암시적 미분 계산기 (단계별 풀이)

자동 감지를 위해 비워 두세요.
특정 점에서의 도함수가 필요하지 않다면 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)$$$을(를) 구하시오.

풀이

합/차의 도함수는 도함수들의 합/차이다:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) - \frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)}$$

상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = \cos{\left(a \right)}$$$$$$f{\left(x \right)} = \sin{\left(x \right)}$$$에 적용합니다:

$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - {\color{red}\left(\cos{\left(a \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$

사인 함수의 도함수는 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$- \cos{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - \cos{\left(a \right)} {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$

상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = \sin{\left(a \right)}$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$에 적용합니다:

$$- \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)\right)} = - \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\sin{\left(a \right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

코사인의 도함수는 $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$입니다:

$$\sin{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} - \cos{\left(a \right)} \cos{\left(x \right)} = \sin{\left(a \right)} {\color{red}\left(- \sin{\left(x \right)}\right)} - \cos{\left(a \right)} \cos{\left(x \right)}$$

간단히 하시오:

$$- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)} = - \cos{\left(a - x \right)}$$

따라서, $$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$.

정답

$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$A


Please try a new game Rotatly